Baumer, Ben. 2015.
“A Data Science Course for Undergraduates: Thinking with Data.” The American Statistician 69 (4): 334–42.
https://doi.org/10.1080/00031305.2015.1081105.
Baumer, Benjamin S., and Nicholas J. Horton. 2023.
“Data Science Transfer Pathways from Associate’s to Bachelor’s Programs.” Harvard Data Science Review 5 (1).
https://doi.org/10.1162/99608f92.e2720e81.
Baumer, Benjamin S., Daniel T. Kaplan, and Nicholas J. Horton. 2021.
Modern Data Science with R. 2nd ed.
Chapman and Hall/CRC Press.
https://www.routledge.com/Modern-Data-Science-with-R/Baumer-Kaplan-Horton/p/book/9780367191498.
Beckman, Matthew D, Mine Çetinkaya-Rundel, Nicholas J Horton, Colin W Rundel, Adam J Sullivan, and Maria Tackett. 2021.
“Implementing Version Control with Git and GitHub as a Learning Objective in Statistics and Data Science Courses.” Journal of Statistics and Data Science Education 29 (sup1): S132–44.
https://doi.org/10.1080/10691898.2020.1848485.
Bishop, Christopher M, and Nasser M Nasrabadi. 2006. Pattern Recognition and Machine Learning. Vol. 4. Springer.
Blair, Jean RS, Lawrence Jones, Paul Leidig, Scott Murray, Rajendra K Raj, and Carol J Romanowski. 2021.
“Establishing ABET Accreditation Criteria for Data Science.” Proceedings of the 52nd ACM Technical Symposium on Computer Science Education, 535–40.
https://doi.org/10.1145/3408877.3432445.
Cannon, Ann R, George W Cobb, Bradley A Hartlaub, et al. 2019. STAT2: Building Models for a World of Data. 2nd ed. New York: W.H. Freeman.
Carver, Robert, Michelle Everson, John Gabrosek, et al. 2016.
Guidelines for Assessment and Instruction in Statistics Education (GAISE) College Report 2016. American Statistical Association; AMSTAT.
https://www.amstat.org/asa/files/pdfs/GAISE/GaiseCollege_Full.pdf.
CC2020 Task Force. 2020.
Computing Curricula 2020: Paradigms for Global Computing Education. Association for Computing Machinery.
https://doi.org/10.1145/3467967.
Çetinkaya-Rundel, Mine, and Victoria Ellison. 2021.
“A Fresh Look at Introductory Data Science.” Journal of Statistics and Data Science Education 29 (sup1): S16–26.
https://doi.org/10.1080/10691898.2020.1804497.
Chang, Winston, Joe Cheng, JJ Allaire, et al. 2025.
Shiny: Web Application Framework for r.
https://shiny.posit.co/.
Cheng, Joe, Barret Schloerke, Bhaskar Karambelkar, Yihui Xie, and Garrick Aden-Buie. 2025.
Leaflet: Create Interactive Web Maps with the JavaScript Leaflet Library.
https://rstudio.github.io/leaflet/.
Cobb, George W. 1998. Introduction to Design and Analysis of Experiments. John Wiley & Sons.
Danyluk, Andrea, and Paul Leidig. 2021.
Computing Competencies for Undergraduate Data Science Curricula: ACM Data Science Task Force. Association for Computing Machinery.
https://doi.org/10.1145/3453538.
De Veaux, Richard D., Mahesh Agarwal, Maia Averett, et al. 2017.
“Curriculum Guidelines for Undergraduate Programs in Data Science.” Annual Review of Statistics and Its Application 4 (1): 1–16.
https://doi.org/10.1146/annurev-statistics-060116-053930.
DeLuca, Laura S, Alex Reinhart, Gordon Weinberg, Michael Laudenbach, Sydney Miller, and David West Brown. 2025.
“Developing Students’ Statistical Expertise Through Writing in the Age of AI.” Journal of Statistics and Data Science Education, 1–13.
https://doi.org/10.1080/26939169.2025.2497547.
Diaz, Katelyn, Silas Weden, and Tess Goldmann. 2025. ggRtsy: Add Some van Gogh Colors and Overlay Colors on Your Ggplot().
Donoho, David. 2017.
“50 Years of Data Science.” Journal of Computational and Graphical Statistics 26 (4): 745–66.
https://doi.org/10.1080/10618600.2017.1384734.
Ellis, Amanda R, and Emily Slade. 2023.
“A New Era of Learning: Considerations for ChatGPT as a Tool to Enhance Statistics and Data Science Education.” Journal of Statistics and Data Science Education 31 (2): 128–33.
https://doi.org/10.1080/26939169.2023.2223609.
Firke, Sam. 2024.
Janitor: Simple Tools for Examining and Cleaning Dirty Data.
https://github.com/sfirke/janitor.
Hardin, J., R. Hoerl, N. J. Horton, et al. 2015.
“Data Science in Statistics Curricula: Preparing Students to ’Think with Data’.” The American Statistician 69 (4): 343–53.
https://doi.org/10.1080/00031305.2015.1077729.
Harris, Charles R., K. Jarrod Millman, Stéfan J. van der Walt, et al. 2020.
“Array Programming with NumPy.” Nature 585 (7825): 357–62.
https://doi.org/10.1038/s41586-020-2649-2.
Hicks, Stephanie C, and Rafael A Irizarry. 2018.
“A Guide to Teaching Data Science.” The American Statistician 72 (4): 382–91.
https://doi.org/10.1080/00031305.2017.1356747.
Hunter, J. D. 2007.
“Matplotlib: A 2D Graphics Environment.” Computing in Science & Engineering 9 (3): 90–95.
https://doi.org/10.1109/MCSE.2007.55.
Irizarry, Rafael A. 2019.
Introduction to Data Science: Data Analysis and Prediction Algorithms with R.
Chapman and Hall/CRC Press.
https://doi.org/10.1201/9780429341830.
Ismay, Chester, and Albert Y Kim. 2019.
Statistical Inference via Data Science: A ModernDive into r and the Tidyverse. New York: Chapman; Hall/CRC.
https://doi.org/10.1201/9780367409913.
James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An Introduction to Statistical Learning. Vol. 112. Springer.
Knaflic, Cole Nussbaumer. 2015. Storytelling with Data: A Data Visualization Guide for Business Professionals. Wiley.
Knuth, Donald Ervin. 1984.
“Literate Programming.” The Computer Journal 27 (2): 97–111.
https://doi.org/10.1093/comjnl/27.2.97.
Krekel, Holger, Bruno Oliveira, Ronny Pfannschmidt, Floris Bruynooghe, Brianna Laugher, and Florian Bruhin. 2004.
Pytest x.y.
Https://github.com/pytest-dev/pytest.
Kuiper, Shonda, and Jeff Sklar. 2012. Practicing Statistics: Guided Investigations for the Second Course. Pearson Higher Ed.
McKinney, Wes. 2010.
“Data Structures for Statistical Computing in Python.” In
Proceedings of the 9th Python in Science Conference, edited by Stéfan van der Walt and Jarrod Millman.
https://doi.org/ 10.25080/Majora-92bf1922-00a .
McKinney, Wes. 2022.
Python for Data Analysis: Data Wrangling with Pandas, NumPy, and Jupyter. 3rd ed. O’Reilly Media, Inc.
https://wesmckinney.com/book.
National Academies of Sciences, Engineering, and Medicine. 2018.
Data Science for Undergraduates: Opportunities and Options. National Academies Press.
https://nas.org/envisioningds.
Nolan, Deborah, and Duncan Temple Lang. 2010.
“Computing in the Statistics Curricula.” The American Statistician 64 (2): 97–107.
https://doi.org/10.1198/tast.2010.09132.
Pebesma, Edzer. 2026.
Sf: Simple Features for r.
https://r-spatial.github.io/sf/.
Posner, Michael A., and April Kerby-Helm. 2025.
The Landscape of Introductory Data Science Courses.
https://ww3.aievolution.com/JSMAnnual2025/Events/viewEv?ev=4272.
Posner, Michael A., April Kerby-Helm, Alana Unfried, Douglas Whitaker, Marjorie E. Bond, and Leyla Batakci. 2024.
“A Cross-Disciplinary Review of Introductory Undergraduate Data Science Course Content.” Proceedings of the 55th ACM Technical Symposium on Computer Science Education v. 2 (New York, NY, USA), SIGCSE 2024, 1937.
https://doi.org/10.1145/3626253.3635352.
Ramsey, Fred, and Daniel Schafer. 2013. The Statistical Sleuth: A Course in Methods of Data Analysis. 3rd ed. Brooks/Cole Publishing Co.
Reinhart, Alex, and Christopher R Genovese. 2020.
“Expanding the Scope of Statistical Computing: Training Statisticians to Be Software Engineers.” Journal of Statistics Education, 1–23.
https://doi.org/10.1080/10691898.2020.1845109.
Roback, Paul, and Julie Legler. 2021.
Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R.
Chapman and Hall/CRC Press.
https://doi.org/10.1201/9780429066665.
Sanchez, Gaston. 2024.
R for Strings: Handling Strings with R. 3rd ed. Gaston Sanchez.
https://www.gastonsanchez.com/R-for-strings/.
Scheidegger, Carlos, Gordon Woodhull, Christophe Dervieux, Charles Teague, J. J. Allaire, and Yihui Xie. 2022.
Quarto. Posit, PBC.
https://quarto.org/.
Schumacher, Carol S., and Martha J. Siegel. 2015.
2015 CUPM Curriculum Guide to Majors in the Mathematical Sciences. The Mathematical Association of America.
https://maa.org/wp-content/uploads/2024/06/2015-CUPM-Curriculum-Guide.pdf.
Sheather, Simon. 2009. A Modern Approach to Regression with R. Springer Science & Business Media.
Sievert, Carson, Chris Parmer, Toby Hocking, et al. 2026.
Plotly: Create Interactive Web Graphics via Plotly.js.
https://plotly-r.com.
Stodden, Victoria. 2020.
“The Data Science Life Cycle: A Disciplined Approach to Advancing Data Science as a Science.” Communications of the ACM 63 (7): 58–66.
https://doi.org/10.1145/3360646.
The pandas development team. 2020.
Pandas-Dev/Pandas: Pandas. V. latest. Zenodo, released February.
https://doi.org/10.5281/zenodo.3509134.
Theobold, Allison S. 2021.
“Oral Exams: A More Meaningful Assessment of Students’ Understanding.” Journal of Statistics and Data Science Education 29 (2): 156–59.
https://doi.org/10.1080/26939169.2021.1914527.
van Buuren, Stef, and Karin Groothuis-Oudshoorn. 2025.
Mice: Multivariate Imputation by Chained Equations.
https://github.com/amices/mice.
VanderPlas, Jake. 2022. Python Data Science Handbook: Essential Tools for Working with Data. 2nd ed. O’Reilly Media, Inc.
Virtanen, Pauli, Ralf Gommers, Travis E. Oliphant, et al. 2020.
“SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.” Nature Methods 17: 261–72.
https://doi.org/10.1038/s41592-019-0686-2.
Waskom, Michael L. 2021.
“Seaborn: Statistical Data Visualization.” Journal of Open Source Software 6 (60): 3021.
https://doi.org/10.21105/joss.03021.
Wickham, Hadley. 2019.
Advanced R. 2nd ed.
Chapman and Hall/CRC Press.
https://adv-r.hadley.nz/.
Wickham, Hadley. 2023.
Tidyverse: Easily Install and Load the Tidyverse.
https://tidyverse.tidyverse.org.
Wickham, Hadley, and Jennifer Bryan. 2023.
R Packages. 2nd ed. O’Reilly Media, Inc.
https://r-pkgs.org/.
Wickham, Hadley, Mine Çetinkaya-Rundel, and Garrett Grolemund. 2023.
R for Data Science. 2nd ed. O’Reilly Media, Inc.
https://r4ds.had.co.nz/.
Wickham, Hadley, Winston Chang, Lionel Henry, et al. 2025.
Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics.
https://ggplot2.tidyverse.org.
Wickham, Hadley, Romain François, Lionel Henry, Kirill Müller, and Davis Vaughan. 2023.
Dplyr: A Grammar of Data Manipulation.
https://dplyr.tidyverse.org.
Wickham, Hadley, Thomas Lin Pedersen, and Dana Seidel. 2025.
Scales: Scale Functions for Visualization.
https://scales.r-lib.org.
Wing, Jeannette M. 2019.
“The Data Life Cycle.” Harvard Data Science Review 1 (1): 6.
https://doi.org/10.1162/99608f92.e26845b4.
Xie, Yihui, Joe Cheng, Xianying Tan, and Garrick Aden-Buie. 2025.
DT: A Wrapper of the JavaScript Library DataTables.
https://github.com/rstudio/DT.
Yan, Donghui, and Gary E Davis. 2019.
“A First Course in Data Science.” Journal of Statistics Education 27 (2): 99–109.
https://doi.org/10.1080/10691898.2019.1623136.