Package index
-
BMDL() - Bayesian Maximum Descriptive Length
-
CET - Hadley Centre Central England Temperature
-
DataCPSimrlnorm_ts_1rlnorm_ts_2rlnorm_ts_3 - Simulated time series data
-
HQC() - Hannan–Quinn information criterion
-
MBIC() - Modified Bayesian Information Criterion
-
MDL() - Maximum Descriptive Length
-
SIC() - Schwarz information criterion
-
as.model()is_model() - Convert, retrieve, or verify a model object
-
as.segmenter()as.seg_cpt()is_segmenter() - Convert, retrieve, or verify a segmenter object
-
as_year() - Convert a date into a year
-
binary2tau()tau2binary() - Convert changepoint sets to binary strings
-
bogota_pm - Particulate matter in Bogotá, Colombia
-
build_gabin_population()log_gabin_population() - Initialize populations in genetic algorithms
-
changepoints() - Extract changepoints
-
compare_models()compare_algorithms() - Compare various models or algorithms for a given changepoint set
-
cut_by_tau()split_by_tau() - Use a changepoint set to break a time series into regions
-
deg_free() - Retrieve the degrees of freedom from a
logLikobject -
diagnose() - Diagnose the fit of a segmented time series
-
exceedances() - Compute exceedances of a threshold for a time series
-
file_name() - Obtain a descriptive filename for a tidycpt object
-
fit_arima() - Fit an ARIMA model
-
fit_lmshift()fit_lmshift_ar1()fit_trendshift()fit_trendshift_ar1() - Regression-based model fitting
-
fit_meanshift()fit_meanshift_norm()fit_meanshift_lnorm()fit_meanshift_norm_ar1() - Fast implementation of meanshift model
-
fit_meanvar() - Fit a model for mean and variance
-
fit_nhpp() - Fit a non-homogeneous Poisson process model to the exceedances of a time series.
-
fitness() - Retrieve the optimal fitness (or objective function) value used by an algorithm
-
new_fun_cpt()validate_fun_cpt()fun_cpt() - Class for model-fitting functions
-
italy_grads - Italian University graduates by disciplinary groups from 1926-2013
-
iweibull()mweibull()parameters_weibull() - Weibull distribution functions
-
ls_models()ls_pkgs()ls_methods()ls_penalties()ls_cpt_penalties()ls_coverage() - Algorithmic coverage through tidychangepoint
-
mcdf() - Cumulative distribution of the exceedances of a time series
-
mde_rainmde_rain_monthly - Rainfall in Medellín, Colombia
-
mlb_diffs - Differences between leagues in Major League Baseball
-
new_mod_cpt()validate_mod_cpt()mod_cpt() - Base class for changepoint models
-
model_args() - Retrieve the arguments that a model-fitting function used
-
model_name() - Retrieve the name of the model that a segmenter or model used
-
model_variance() - Compute model variance
-
pad_tau()unpad_tau()is_valid_tau()regions_tau()validate_tau() - Pad and unpad changepoint sets with boundary points
-
plot(<tidyga>) - Plot GA information
-
plot_best_chromosome()plot_cpt_repeated() - Diagnostic plots for
seg_basketobjects -
plot_intensity() - Plot the intensity of an NHPP fit
-
regions() - Extract the regions from a tidycpt object
-
new_seg_basket()seg_basket() - Default class for candidate changepoint sets
-
new_seg_cpt()seg_cpt() - Base class for segmenters
-
seg_params() - Retrieve parameters from a segmenter
-
segment() - Segment a time series using a variety of algorithms
-
segment_cptga() - Segment a time series using a genetic algorithm
-
segment_ga()segment_ga_shi()segment_ga_coen()segment_ga_random() - Segment a time series using a genetic algorithm
-
segment_manual() - Manually segment a time series
-
segment_pelt() - Segment a time series using the PELT algorithm
-
tau2time()time2tau() - Convert changepoint sets to time indices
-
tbl_coef() - Format the coefficients from a linear model as a tibble
-
test_set() - Simulate time series with known changepoint sets
-
tidycpt-class - Container class for
tidycptobjects -
whomademe() - Recover the function that created a model