Skip to contents

Retrieve the indices of the changepoints identified by an algorithm or model.

Usage

changepoints(x, ...)

# Default S3 method
changepoints(x, ...)

# S3 method for class 'mod_cpt'
changepoints(x, ...)

# S3 method for class 'seg_basket'
changepoints(x, ...)

# S3 method for class 'seg_cpt'
changepoints(x, ...)

# S3 method for class 'tidycpt'
changepoints(x, use_labels = FALSE, ...)

# S3 method for class 'ga'
changepoints(x, ...)

# S3 method for class 'cpt'
changepoints(x, ...)

# S3 method for class 'wbs'
changepoints(x, ...)

Arguments

x

A tidycpt, segmenter, or mod_cpt object

...

arguments passed to methods

use_labels

return the time labels for the changepoints instead of the indices.

Value

a numeric vector of changepoint indices, or, if use_labels is TRUE, a character of time labels.

Details

tidycpt objects, as well as their segmenter and model components, implement changepoints() methods.

Note that this function is not to be confused with wbs::changepoints(), which returns different information.

For the default method, changepoints() will attempt to return the cpt_true attribute, which is set by test_set().

See also

wbs::changepoints()

Other tidycpt-generics: as.model(), as.segmenter(), diagnose(), fitness(), model_name()

Examples

cpts <- segment(DataCPSim, method = "ga", maxiter = 5)
changepoints(cpts$segmenter)
#>    x4    x7   x10   x13   x15   x17   x23   x26   x27   x29   x30   x31   x34 
#>     4     7    10    13    15    17    23    26    27    29    30    31    34 
#>   x37   x38   x39   x46   x47   x49   x52   x53   x54   x55   x58   x60   x61 
#>    37    38    39    46    47    49    52    53    54    55    58    60    61 
#>   x62   x63   x64   x65   x66   x67   x70   x71   x77   x78   x79   x80   x82 
#>    62    63    64    65    66    67    70    71    77    78    79    80    82 
#>   x83   x94   x95   x97  x100  x105  x106  x108  x109  x110  x113  x115  x117 
#>    83    94    95    97   100   105   106   108   109   110   113   115   117 
#>  x119  x124  x126  x127  x128  x129  x130  x131  x133  x135  x137  x142  x148 
#>   119   124   126   127   128   129   130   131   133   135   137   142   148 
#>  x155  x158  x163  x165  x166  x167  x169  x172  x173  x174  x175  x176  x178 
#>   155   158   163   165   166   167   169   172   173   174   175   176   178 
#>  x180  x181  x183  x185  x188  x190  x192  x193  x194  x198  x199  x201  x202 
#>   180   181   183   185   188   190   192   193   194   198   199   201   202 
#>  x205  x207  x209  x210  x212  x215  x218  x222  x224  x225  x229  x230  x232 
#>   205   207   209   210   212   215   218   222   224   225   229   230   232 
#>  x236  x238  x240  x241  x243  x245  x249  x253  x257  x259  x260  x262  x265 
#>   236   238   240   241   243   245   249   253   257   259   260   262   265 
#>  x266  x267  x271  x274  x275  x277  x279  x280  x284  x286  x287  x288  x289 
#>   266   267   271   274   275   277   279   280   284   286   287   288   289 
#>  x290  x291  x294  x296  x299  x301  x303  x310  x311  x313  x314  x316  x317 
#>   290   291   294   296   299   301   303   310   311   313   314   316   317 
#>  x320  x325  x329  x334  x337  x338  x344  x345  x348  x349  x350  x352  x354 
#>   320   325   329   334   337   338   344   345   348   349   350   352   354 
#>  x355  x359  x362  x363  x364  x365  x367  x371  x372  x377  x379  x381  x383 
#>   355   359   362   363   364   365   367   371   372   377   379   381   383 
#>  x384  x385  x389  x391  x392  x394  x395  x398  x400  x402  x404  x405  x407 
#>   384   385   389   391   392   394   395   398   400   402   404   405   407 
#>  x408  x412  x414  x416  x417  x419  x421  x422  x424  x425  x426  x427  x429 
#>   408   412   414   416   417   419   421   422   424   425   426   427   429 
#>  x435  x438  x440  x441  x442  x443  x445  x446  x447  x448  x452  x456  x458 
#>   435   438   440   441   442   443   445   446   447   448   452   456   458 
#>  x460  x466  x468  x469  x471  x472  x473  x474  x477  x478  x479  x481  x484 
#>   460   466   468   469   471   472   473   474   477   478   479   481   484 
#>  x485  x487  x488  x490  x493  x496  x498  x499  x500  x505  x508  x510  x511 
#>   485   487   488   490   493   496   498   499   500   505   508   510   511 
#>  x514  x515  x517  x520  x521  x523  x526  x530  x533  x535  x537  x538  x540 
#>   514   515   517   520   521   523   526   530   533   535   537   538   540 
#>  x542  x543  x544  x545  x546  x548  x549  x550  x551  x553  x556  x561  x567 
#>   542   543   544   545   546   548   549   550   551   553   556   561   567 
#>  x571  x572  x573  x574  x577  x578  x583  x585  x588  x593  x596  x597  x598 
#>   571   572   573   574   577   578   583   585   588   593   596   597   598 
#>  x599  x601  x602  x605  x606  x609  x611  x615  x618  x621  x622  x623  x626 
#>   599   601   602   605   606   609   611   615   618   621   622   623   626 
#>  x628  x629  x630  x633  x634  x635  x637  x638  x641  x645  x647  x649  x650 
#>   628   629   630   633   634   635   637   638   641   645   647   649   650 
#>  x653  x655  x656  x657  x661  x662  x668  x673  x675  x676  x677  x678  x679 
#>   653   655   656   657   661   662   668   673   675   676   677   678   679 
#>  x680  x687  x688  x689  x691  x695  x697  x701  x703  x705  x706  x709  x713 
#>   680   687   688   689   691   695   697   701   703   705   706   709   713 
#>  x715  x716  x717  x718  x721  x722  x730  x731  x732  x734  x736  x740  x743 
#>   715   716   717   718   721   722   730   731   732   734   736   740   743 
#>  x744  x745  x746  x747  x749  x750  x751  x752  x756  x757  x761  x763  x764 
#>   744   745   746   747   749   750   751   752   756   757   761   763   764 
#>  x765  x769  x771  x777  x778  x780  x783  x784  x785  x786  x788  x789  x794 
#>   765   769   771   777   778   780   783   784   785   786   788   789   794 
#>  x797  x799  x800  x801  x805  x808  x811  x813  x818  x819  x820  x821  x822 
#>   797   799   800   801   805   808   811   813   818   819   820   821   822 
#>  x825  x826  x828  x829  x832  x833  x834  x837  x838  x840  x844  x845  x847 
#>   825   826   828   829   832   833   834   837   838   840   844   845   847 
#>  x851  x852  x853  x854  x855  x856  x861  x862  x863  x866  x869  x871  x873 
#>   851   852   853   854   855   856   861   862   863   866   869   871   873 
#>  x875  x876  x877  x879  x882  x884  x889  x893  x895  x896  x897  x898  x900 
#>   875   876   877   879   882   884   889   893   895   896   897   898   900 
#>  x906  x907  x908  x910  x912  x917  x918  x920  x922  x923  x930  x931  x934 
#>   906   907   908   910   912   917   918   920   922   923   930   931   934 
#>  x936  x937  x938  x939  x940  x941  x944  x945  x946  x950  x952  x953  x954 
#>   936   937   938   939   940   941   944   945   946   950   952   953   954 
#>  x955  x958  x962  x963  x965  x967  x969  x970  x972  x973  x974  x975  x977 
#>   955   958   962   963   965   967   969   970   972   973   974   975   977 
#>  x978  x979  x980  x982  x983  x988  x990  x991  x993  x995  x996 x1000 x1001 
#>   978   979   980   982   983   988   990   991   993   995   996  1000  1001 
#> x1002 x1003 x1005 x1006 x1007 x1009 x1011 x1013 x1015 x1016 x1019 x1022 x1023 
#>  1002  1003  1005  1006  1007  1009  1011  1013  1015  1016  1019  1022  1023 
#> x1024 x1025 x1026 x1030 x1031 x1033 x1034 x1035 x1036 x1037 x1038 x1039 x1040 
#>  1024  1025  1026  1030  1031  1033  1034  1035  1036  1037  1038  1039  1040 
#> x1041 x1043 x1044 x1047 x1048 x1049 x1050 x1052 x1055 x1056 x1058 x1059 x1061 
#>  1041  1043  1044  1047  1048  1049  1050  1052  1055  1056  1058  1059  1061 
#> x1062 x1064 x1065 x1071 x1072 x1073 x1076 x1079 x1082 x1083 x1085 x1089 x1092 
#>  1062  1064  1065  1071  1072  1073  1076  1079  1082  1083  1085  1089  1092 
#> x1094 x1095 
#>  1094  1095 

cpts <- segment(DataCPSim, method = "wbs")
changepoints(cpts$segmenter)
#>  [1]  547  822  939  972  980  982  997  999 1031 1033 1040 1041 1063 1066