Skip to contents

Segmenting functions for various genetic algorithms

Usage

segment_cptga(x, ...)

Arguments

x

A time series

...

arguments passed to changepointGA::cptga()

Value

A tidycptga object. This is just a changepointGA::cptga() object with an additional slot for data (the original time series).

Details

segment_cptga() uses the genetic algorithm in changepointGA::cptga() to "evolve" a random set of candidate changepoint sets, using the penalized objective function specified by penalty_fn. By default, the normal meanshift model is fit (see fit_meanshift_norm()) and the BIC penalty is applied.

Examples

# \donttest{
# Segment a time series using a genetic algorithm
res <- segment_cptga(CET)
summary(res)
#>    Length     Class      Mode 
#>         1 tidycptga        S4 

# Segment a time series using changepointGA
x <- segment(CET, method = "cptga")
summary(x)
#> 
#> ── Summary of tidycpt object ───────────────────────────────────────────────────
#> → y: Contains 366 observations, ranging from 6.86  to 11.18  .
#>  Segmenter (class tidycptga )
#> → A: Used the Genetic algorithm from the changepointGA  package.
#> → τ: Found 2 changepoint(s).
#> → f: Reported a fitness value of -370.22  using the BIC penalty.
#>  Model
#> → M: Fit the arima  model.
#> → θ: Estimated 2 parameter(s), for each of 3 region(s).
changepoints(x)
#> [1]  42 330
# }